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‘ Motivation/Goal

Build marine energy classification systems that, like wind, codify and support
resource assessment, design and device-type certification for wave and tidal energy
devices

\ Gevice classification - codify @

streamline device design, device-
type certification, product-line
development and manufacturing

Resource classification - support
project siting, feasibility, and
scoping studies, regional energy
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Woave resource classification

« Main parameter, wave power, J (kW/m);
Class I, II, lIl, IV

e Subclass parameter, T,, peak period
bandwidth, delineates three WEC resonant
bandwidths

1, local wind seas, 0<Tp<7
2, short-period swell, 7<T, <10
3, long-period swell, 10<T,

« Related standards

Wave resource assessment and
characterization, IEC TS 62600-101:2015-06

WEC power performance assessment, IEC TS
62600-100:2012-08
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S. Ahn, K. A. Haas, V. S. Neary, Wave energy resource classification system for US coastal
waters, Ren & Sust Energy Rev, 104, 54-68, 2019. https./doi.org/10.1016/j.rser.2019.01.017




Tidal resource classification: Preliminary

e Main parameter, tidal power density,
P (kW/m?2); Class I, II, III, IV
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e Subclass parameter TBD, A, a
constraint on the theoretical resource

Multiple levels TBD

« Related standards

Tidal resource assessment and
characterization, IEC TS 62600-
201:2015-04

TEC power performance assessment,
IEC TS 62600-200:2013-05
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Z. Defne et al., “National geodatabase of tidal stream power resource in USA,” Renew Energy,
16(5), pp. 3326-3338, 2012.



Tidal resource classification: Preliminary

Relate the mean power, B,, (kW/m?) to the

mean velocity, V,, (m/s)

P (kW/m?)
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Tidal resource classification: Preliminary

US West Coast

60
95

)
©

)
©
=)
=
=
Q)
-l

-155 -154 153 152
Longitude

-151

-150

-149

-120

Lattitude

io. US East Coast m/s
44
|
42+
40 - 1.3
—(
3 40.8
11
q 4078
c 1.05
4 4076
138 40.74 111
2
1% 40.72
0.8
5
40.7
9 : 144
- [y East River
g
40.66 L 1 1 1 1 |
-73.98-73.96-73.94-73.92 -73.9 -73.88
Longitude

=4




WEC classification: Preliminary

- Main parameter, H; ., = Hysp (M), 50-year Class I 11 111 S
return H,, Class I, Il, llI T (m) 15 10 | 5 | Specified
« Note H,,cqn) = CHy 50 for distinct wave 1 0<Tr<7 I(1) I1(1) | III(1) | by
climates | 2 | 7<T<10 | 12) | 1@) | 1) | designer
* Subclass parameter, T,, peak period ; | |
bandwidth, delineates three energy 3 | 10<T» | I3) | I3) | II(3)
transfer mechanisms (normal operations) | |
1, local wind seas, 0<T <7 72N B

2, short-period swell, 7<Tp<10
3, long-period swell, 10<T}
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TEC classification: Preliminary

* Main parameter, V... (m/s), max,3-min avg
current for extreme design load case (DLC);
Class I, 11, 1lI

* Subclass parameter, /.., turbulence intensity
@ 1.5 m/s

A, high, 0.15< /., < 0.20
B, moderate, 0.10< [ < 0.15
C, low, I, <0.10
» Related technical specs, standards

Design requirements for marine energy
systems, |[EC TS 62600-2:2016-08

Environmental conditions & environmental
Loads, DNV-RP-C205:2014

o« FY20 studies:

Reviewing turbulence measurements database
with NREL to identify trends

Standard method for determining maximum
current speed, e.g., 1-percentile current
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Proposed motions

The US TAG is asked to endorse and deliver the following proposal to TC 114 for

the integration of classification systems into standards. This proposal would be
discussed and approved at the TC 114 Plenary Meeting in April 2020:

1) Update the Scope of Work of AHG 8 to include the integration of classification
systems into TC 114 documents. AHG 8 would oversee the coordination and
integration of classification systems across TC 114.

2) The following Maintenance Teams would consider incorporation of classification
systems in their Technical Specifications during their maintenance cycle:
> MT 62600-2: Design, TS 62600-2:2019-10 {Ed. 2}
> WAVE AND TIDAL CONDITIONS CLASSIFICATION
o MT 62600-101: Wave resource characterization, TS 62600-101:2015-06 {Ed. 1}
> WAVE RESOURCE CLASSIFICATION
o MT 62600-201: Tidal resource charactetrization, TS 62600-201:2015-04 {Ed. 1}
> TIDAL RESOURCE CLASSIFICATION
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